Role for tet in hyperglycemia-induced demethylation: a novel mechanism of diabetic metabolic memory.

نویسندگان

  • Guo-Lian Ding
  • He-Feng Huang
چکیده

During germ cell and early embryonic development— the most sensitive and vulnerable period of epigenetic reprogramming—exposure to an adverse environment leads to abnormal methylation and, possibly, long-term health problems. DNA methylation, a major epigenetic mechanism for gene silencing, is recognized to be responsible for the stability of gene expression status. The majority of cytosine-phosphate-guanine sites (CpGs) in mammalian genomes are methylated. DNA methyltransferase (Dnmt) 3A and 3B are essential for de novo methylation, and Dnmt1 maintains methylation patterns during cell division (1). Establishment and maintenance of cell type–specific DNA methylation patterns are dependent on both methylation and demethylation. DNA demethylation is the process of the removal of a methyl group from nucleotides in DNA, which can be passive or active. It has been generally understood that passive DNA demethylation occurs by a reduction in activity or absence of Dnmts, whereas the mechanism of active DNA demethylation has been controversial in recent decades. Recently, three enzyme families have been implicated in active DNA demethylation via DNA repair. The first is the ten-eleven translocation (Tet) family of enzymes. 5Methylcytosine (5mC) can be hydroxylated by Tet to form 5-hydroxymethylcytosine (5hmC), which can be further oxidized to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). The second family is the AID/APOBEC family. 5mC (or 5hmC) can be deaminated by AID/APOBEC family members to form 5-methyluracil (5mU) or 5hydroxymethyluracil (5hmU). The third is the UDG family of base excision repair glycosylases. TDG and SMUG1 replace these intermediates (i.e., 5mU, 5hmU, or 5caC), culminating in cytosine replacement and DNA demethylation (2–4). Environment and nutrition have been confirmed to affect epigenetic modification. Although it has been documented that hyperglycemia induces demethylation of specific cytosines throughout the genome (5,6), whether the demethylation could be persistent, and the mechanism involved need to be further investigated. In this issue, Dhliwayo et al. (7) used a zebrafish model to elucidate the potential molecular mechanism that is responsible for hyperglycemia-induced DNA demethylation. This is a very interesting study when considered in the context of previous findings from this team. In previous studies, these investigators found that the zebrafish demonstrates metabolic memory (MM). Hyperglycemia was induced by streptozocin in adult zebrafish, and following streptozocin withdrawal, they were allowed to reestablish euglycemia. Blood glucose and serum insulin returned to physiological levels because of pancreatic b-cell regeneration, whereas caudal fin regeneration and skin wound healing remained impaired to the same extent as observed in diabetic zebrafish, and this impairment was transmitted to daughter cell tissue. Furthermore, the investigators found that hyperglycemia caused genome-wide demethylation and aberrant gene expression that were inherited by daughter cells and may contribute to the MM (8). They hypothesized that this may be an explanation for heritable transmission of diabetic MM induced by instant exposure in hyperglycemia. In the new study by Dhliwayo et al. (7), the most notable result concerns a role for the Tet in hyperglycemiainduced DNA demethylation. They provided evidence that hyperglycemia induces both expression and activity of the Tet enzymes, yielding known intermediates of the iterative oxidation pathway that leads to demethylation of 5mC. As 5hmC is the common intermediate for the Tet-specific demethylation, they examined 5hmC

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parp Inhibition Prevents Ten-Eleven Translocase Enzyme Activation and Hyperglycemia-Induced DNA Demethylation

Studies from human cells, rats, and zebrafish have documented that hyperglycemia (HG) induces the demethylation of specific cytosines throughout the genome. We previously documented that a subset of these changes become permanent and may provide, in part, a mechanism for the persistence of complications referred to as the metabolic memory phenomenon. In this report, we present studies aimed at ...

متن کامل

Effects of safflower oil on FBS and lipid profile in alloxan induced diabetic rats and its mechanism

Background & Aim: Diabetes mellitus often has been referred to as a syndrome of disordered metabolism, usually due to a combination of hereditary and environmental causes, resulting in abnormal of high blood sugar levels (hyperglycemia). Nowadays, no-drug treatments (medicinal plants) are novel therapeutic approaches in the treatment of diabetes. Experimental: This study aimed at assessing the...

متن کامل

New Perspectives on the Role of Hyperglycemia, Free Fatty Acid and Oxidative Stress in B-Cell Apoptosis

Apoptosis is a complex network of biochemical and molecular pathway with fine regulatory mechanisms that control the death event during several pathological situations in multi cellular organisms. It is the part of normal development that occurs in a variety of diseases and is known as aberrant apoptosis. Pancreatic β cell apoptosis is also a pathological feature which is common in both type 1 ...

متن کامل

Effects of safflower oil on FBS and lipid profile in alloxan induced diabetic rats and its mechanism

Background & Aim: Diabetes mellitus often has been referred to as a syndrome of disordered metabolism, usually due to a combination of hereditary and environmental causes, resulting in abnormal of high blood sugar levels (hyperglycemia). Nowadays, no-drug treatments (medicinal plants) are novel therapeutic approaches in the treatment of diabetes. Experimental: This study aimed at assessing the...

متن کامل

The effect of Lavandula dentata aerial parts hydroalcoholic extract on learning and memory in male streptozotocin-induced diabetic rat

Background and Objective: Diabetes is a chronic metabolic disorder and oxidative stress plays an important role in the development of diabetic complications such as learning and memory impairment. Since Lavendula species improve learning and memory and Lavandula dentata contains antioxidant and anti-inflammatory effects and it is used as ustokhoddus in Iran, we have designed this research to st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 63 9  شماره 

صفحات  -

تاریخ انتشار 2014